Characterizing CT-Derived Mass Change of Non-Tumor Pathology During Lung Radiotherapy

C Guy*¹, E Weiss¹, N Jan¹, L Reskho¹, G Christensen², G Hugo¹

¹Virginia Commonwealth University, Richmond, VA
²University of Iowa, Iowa City, IA
Acknowledgements

This work was supported by the National Cancer Institute of the National Institutes of Health under Award Number R01CA166119.

Conflicts of Interest

The authors have no conflicts of interest.
Longitudinal Tissue Changes in Lung

Tumor Regression
Atelectasis Resolution

Significant regression within few weeks of starting treatment

- Response to radiation and chemotherapy

End of treatment, tumor shrinks by:

- Up to 80%
- Average of 44.3%
- 0.6% - 2.4% per day

1 Siker et al. 2006 2 Fox et al. 2009 3 Sonke et al. 2010 4 Woodford et al 2007
Longitudinal Tissue Changes in Lung

Tumor Regression
Atelectasis Resolution

- Centrally-located tumor restricts airflow to lobe
- Lobe collapses to uniform, high-intensity region
- In response to treatment, tumor regresses
- Airflow restores, re-aerating lobe
Longitudinal Tissue Changes in Lung

Tumor Regression
Pleural Effusion
Atelectasis Resolution

Lobar Atelectasis:

- Collapse may be partial or full
- Expansion may be complete, partial, or no change

Focus of Study
Deformable Image Registration (DIR) Failure

Correspondence problem arises
- Matching voxels have very different intensity or do not exist

Standard Algorithm (SSD)
- Pulls high-intensity structures to fill atelectatic region
Deformable Image Registration (DIR) Failure

Poor DIR prohibits accurate plan adaptation and safe dose escalation

Characterization of Large Geometric Changes

• Assess appropriateness of DIR algorithm components (similarity metrics)
• Develop an improved DIR algorithm for such cases
Characterization of Atelectasis

Must understand:
- Mass Preservation
- Location / Appearance
- Collapse type (full lobe or partial lobe)
- Resolution type (complete, partial, none)

Full Lobe Collapse Complete Resolution
Partial Lobe Collapse Partial Resolution
Characterization of Atelectasis

Hypotheses:
• Density changes in proportion to degree of resolution
 ▪ No change < Partial resolution < Full resolution
• Mass is preserved as atelectasis resolves
 ▪ $\text{Mass}_{\text{collapsed}} = \text{Mass}_{\text{expanded}}$
All have NSCLC

12% have complete resolution (n = 2)

65% have partial resolution (n = 12)

Average of 6.5 weeks between baseline and follow-up scan

<table>
<thead>
<tr>
<th>Subject</th>
<th>Location</th>
<th>Resolution</th>
<th>Weeks Between Scans</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RLL, RML</td>
<td>No Change</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>LLL</td>
<td>Partial</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>LUL</td>
<td>Partial</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>LLL</td>
<td>Complete</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>RLL</td>
<td>No Change</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>RUL</td>
<td>Partial</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>LUL</td>
<td>Partial</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>RLL</td>
<td>Partial</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>RUL</td>
<td>Partial</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>RUL</td>
<td>No Change</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>RLL</td>
<td>Partial</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>RLL</td>
<td>Complete</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>RLL, RML</td>
<td>Partial</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>RLL</td>
<td>Partial</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>LLL</td>
<td>Partial</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>RLL</td>
<td>Partial</td>
<td>8</td>
</tr>
<tr>
<td>17</td>
<td>RML</td>
<td>Partial</td>
<td>6</td>
</tr>
</tbody>
</table>
Lobe Delineations

Physician delineated:
- All lung lobes
- Tumor
- Atelectasis

Difficult to determine accurate tissue correspondence
- Especially with partial response
- Whole lobes investigated instead

Atelectatic Lobe
Re-aerated Lobe
Contour Pre-processing

Converted to binary masks
- 1 on and within contour
- 0 outside contour

Tumor excluded from masks
- Mass known to change

3D erosion by 2 voxels
- Removes extra-pleural tissue included in delineation
Image Pre-processing

Images are linearly calibrated\(^5\)
- Blood in descending aorta
 - + 50 HU
- Air outside body
 - -1000 HU
- Eliminates variability in scanner performance

Value of 1000 added to each voxel
- Converts to relative physical density

Air: -1000 HU \(\rightarrow\) \(~0\) mg/cc (relative)

Blood: 50 HU \(\rightarrow\) \(~1050\) mg/cc (relative)

\(^5\)Staring et al. 2014
Mass Calculation

Goal of study:
- Investigate relative density / mass
 - Not absolute

Using pre-processed image:
Relative Density x Voxel Volume = Relative Mass

Mass change from planning to mid-treatment calculated
- Done for each lobe of each patient
- Healthy lobes used as control
Slight decrease in density found for healthy lobes

- Pathology-free Ipsilateral (n = 27): mean = -5.2%
- Contralateral (n = 39): mean = -7.2%

No significant difference between groups

- $p = 0.519$ (Wilcoxon signed-rank test)
No mass change found for healthy lobes
- Pathology-free Ipsilateral (n = 27): mean = 0.5%
- Contralateral (n = 39): mean = -2.0%

No significant difference between groups
- $p = 0.727$ (Wilcoxon signed-rank test)
Results – NTP Lobes (Density)

Density decreases in proportion to resolution vs. healthy lobes

- -63.5% for full resolution (n = 3) \(p = 3.75 \times 10^{-3} \)
- -38.2% for partial resolution (n = 10) \(p = 2.82 \times 10^{-5} \)
- -8.6% for no change (n = 5) \(p = 0.849 \) (insignificant)
Decrease in mass for lobes with pathology
- -20.0% for all resolution types combined
 - -23.3% for full resolution (n = 3)
 - -22.8% for partial resolution (n = 10)
 - -12.3% for no change (n = 5)

Significant difference in pathology vs. healthy lobes
p = 0.010
Conclusions

• Control lobes (healthy ipsilateral & contralateral)
 ▪ No mass change occurs (as hypothesized)
 ▪ Slight decrease in density

• NTP lobes experience density decrease in proportion to degree of resolution
 ▪ Full resolution > partial resolution
 ▪ No change lobes no different than healthy

• NTP lobes lose mass as re-aeration occurs
 ▪ Thought to be due presence of additional matter during collapsed state (unexpected)
 ➢ Edema & infiltrate
Conclusions

Observed density changes

- Straight-forward intensity matching (e.g. SSD, Demons) not appropriate

Observed mass changes

- Mass preserving algorithm (e.g. SSTVD) cannot be used for atelectasis

DIR algorithm for large geometric changes in lung must properly account for observed mass and density changes
Thank You!